Combining ion mobility spectrometry with mass spectrometry for the analysis of complex samples: the potential for environmental analysis

Colin Creaser
Mobility of an ion in a drift tube in the presence of an electric field gradient and a buffer gas (e.g. He, N\textsubscript{2} or air; 1-5 mbar or 1 bar)

\[v_d = K \cdot E \]

[\(v_d \) = ion velocity, \(E \) = electric field gradient, \(K \) = ion mobility]
Under low field conditions, ion mobility (K) is determined by:

\[K = \frac{3q}{16N} \left(\frac{2\pi}{\mu k_B T} \right)^{1/2} \left(\frac{1}{\Omega} \right) \]

[N = buffer gas number density, T = temperature, q = ionic charge, \(\mu = \) reduced mass and \(\Omega = \) collision cross section]

⇒ Separation depends on ion charge and shape/size
Ion mobility drift cell (Smiths Detection)

4.2 cm drift tube

Resolution in ion mobility spectrometry

Figure 2: Nano-ESI/IMS spectrum of L-arginine at 100°C using nitrogen drift gas.

\[[\text{L-Arg}+\text{H}]^+ \]

\[[\text{(L-Arg)}_2+\text{H}]^+ \]

\[\text{[Solvent]}^+ \]

RP (FWHM) 32
Efficiency (N) 5800

[nano-ESI/IMS of L-arginine; 4.2 cm drift tube; N\(_2\) at atmospheric pressure]

Ion mobility in high and low electric fields

- Mobility is dependent on electric field strength

\[K \left(\frac{E}{N} \right) = K(0) \left[1 + \alpha \left(\frac{E}{N} \right) \right] \]

- Alpha coefficient – compound (ion) dependent

Factors affecting differential mobility in the gas phase

- Ion/buffer gas interactions (clustering/declustering)
- Frictional heating
- Structural/conformational change
- Dipole alignment
Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS)/Differential mobility spectrometry (DMS)

- Compensation field (CF) set to transmit ions of selected differential mobility
- Continuous ion beam (equivalent to quadrupole mass filter)

FAIMS DF vs CF heat plot for 3-methylxanthine complexes

Dispersion field (DF, Td)

Compensation field (CF; Td)

[(3-MX)_4+Na]^+

DF 320 Td

[(3-MX)_4+Na]^+

Intensity vs CF (Td)

ESI-FAIMS-MS of 2,4,6-trimethylaniline and N,N-dimethyl-m-toluidine (Dispersion field = 230 Td; electrode gap = 100 μm; 50 ng/ml)

Selected ion response for m/z 136

[Smith R et al., Anal. Methods, 2013, 5, 3799]
Applications of ion mobility spectrometry: Stand-alone detection of explosives and chemical agents
Applications of ion mobility spectrometry: International space station cabin air
Environmental applications of ion mobility spectrometry:

Review: Marquez-Sillero et al, Ion-mobility spectrometry for environmental analysis, TRAC, 2011, 30, 677-690]
Ion mobility spectrometry configurations:

Sample extraction/inlet systems: membrane inlet, thermal desorption, SPE, SPME, GC, LC etc
Environmental applications of ion mobility spectrometry: detection of BTEX by multicapillary GC/DTIMS

Environmental applications of ion mobility spectrometry: detection of BTEX by multicapillary GC/DTIMS

[UV photoionization (positive ion), drift tube 6 or 12 x 1.5 cm (375 V/cm), drift gas N$_2$ at 200 ml/min, MCC SE-30 (70 cm)]

Environmental applications of ion mobility spectrometry: detection of BTEX by multicapillary GC/DTIMS

[UV photoionization (positive ion), drift tube 6 or 12 x 1.5 cm (375 V/cm), drift gas N\textsubscript{2} at 200 ml/min, MCC SE-30 (70 cm)]

RSC Joint Meeting, 3rd March 2017
Stand-alone ion mobility: environmental applications

- Transportability/field-based application of DTIMS/FAIMS
- Ease of use
- High sensitivity (<ppm)
- Rapid response (seconds – minutes)
- Limited dynamic range (1-2 orders of magnitude for drift tube IMS)
 - Threshold monitoring
- Low resolution (not suitable for complex mixtures)

⇒ Combined ion mobility-mass spectrometry
Combining ion mobility spectrometry with mass spectrometry

MS: quadrupole, triple quadrupole, Q-trap, time-of-flight, Q-TOF, Orbitrap
Drift tube ion mobility spectrometry (DTIMS)

Static field

- Agilent 6560
- Excellims HRIMS
- Tofwerk IMS-MS

Travelling wave (TWIMS)

- Waters Synapt G2
ESI-IM(TWIMS)-MS analysis of protonated active pharmaceutical ingredients

A. Lamivudine
B. Lamotrigine
C. Rosiglitazone
D. Desfluro Paroxetine
E. Paroxetine
F. Lamotrigine impurity

ESI-IM(TWIMS)-MS drift time vs m/z plot for protonated active pharmaceutical ingredients

A. Lamivudine
B. Lamotrigine
C. Rosiglitazone
D. Desfluoro Paroxetine
E. Paroxetine
F. Lamotrigine impurity

RSC Joint Meeting,
3rd March 2017
Environmental applications of ion mobility-mass spectrometry: targeted analysis
Environmental applications of ion mobility-mass spectrometry: detection of sulfonylurea herbicides in river water by ESI-DTIMS-quadrupole MS

[ESI (positive ion), drift tube 375 V/cm, drift gas N\textsubscript{2} at 800 ml/min, river water sample spiked with 25 ppm sulfometuron-methyl]

Environmental applications of ion mobility-mass spectrometry: detection of sulfonylurea herbicides in river water by ESI-DTIMS-quadrupole MS

⇒ Rapid analyte detection/identification based on m/z and drift time

FAIMS-MS: cylindrical electrodes (Thermo Scientific)

(electrode gap ~ 1-3 mm)

Electrospray ion source → Mass spectrometer

RSC Joint Meeting,
3rd March 2017
FAIMS-MS: planar electrodes

(electrode gap ~ 0.5 mm)

AB SCIEX SelexION

RSC Joint Meeting, 3rd March 2017
Prototype Owlstone ultra-FAIMS chip mounted into chip cartridge located behind spray shield in Jet Stream ESI source in front of transfer capillary

(electrode gap 0.1 mm)
Environmental applications of ion mobility-mass spectrometry: detection of haloacetic acids in water by ESI-FAIMS-quadrupole MS

[ESI (-ve ion, PE Sciex API 300), DV -3400/-3600 V (0.75 MHz), drift gas N₂, 1 ppm]

[adapted from: B Ells et al., Anal. Chem. 2000, 72, 4555-4559]
Environmental applications of ion mobility-mass spectrometry: detection of haloacetic acids in water by ESI-FAIMS-quadrupole MS

Reducing chemical noise gives lower LOD and increased LDR

[adapted from: B Ells et al., Anal. Chem. 2000, 72, 4555-4559]
Environmental applications of ion mobility-mass spectrometry: non-targeted analysis
Heat plots for:

FAIMS-TOFMS
(Owlstone ultra-FAIMS; CF vs \(m/z \) at DF 240 Td)
and
TWIMS-TOFMS
(Waters Synapt G2; Bin No. (drift time) vs \(m/z \))

[Urine extract after SPE extraction; direct infusion; ESI]

⇒ Increased peak capacity in screening/’omics’ applications

Acquisition of nested LC-DTIMS (TWIMS)-MS datasets:
(Metabolite profiling of saliva for biomarkers of physiological stress)

⇒ 10 min LC run = 600 TWIMS spectra = 128,000 TOF mass spectra

[Malkar et al., Metabolomics, 2013, 9, 1192]
Acquisition of nested LC-DTIMS (TWIMS)-MS datasets: (Metabolite profiling of saliva for biomarkers of physiological stress)

\[m/z \ 100.07 \pm 0.02; \ \delta-\text{valerolactam (2-piperidone)} \]

\[m/z \ 100.0755 \text{ ‘up-regulated’ in saliva after exercise} \]
Acquisition of nested LC-DTIMS (TWIMS)-MS datasets for non-targeted analysis: analyte identification

- Retention time
- m/z (accurate mass)/Tandem mass spectrometry (MS/MS)
- Ion mobility (drift time) \rightarrow Collision cross section (CCS)
Ion mobility performance characteristics: structural analysis

Measurement of collision cross section (Ω):
- Directly from the Mason-Schamp equation (static field drift tube IMS)
- Using calibrants (TWIMS and static field drift tube IMS)

$$K = \frac{(3q/16N)}{(2\pi/\mu k_B T)^{1/2}} \left(\frac{1}{\Omega}\right)$$
Correlating an experimental CCS with CCS derived from modelled/x-ray structures/library standards

- Modelled/x-ray structure
- Calculated CCS
- Compare CCSs
- Library of CCS values (e.g. metabolites)
- CCS value from analysis of standard
- Experimental CCS for unknown

RSC Joint Meeting,
3rd March 2017
Acquisition of nested LC-IM-qTOF-MS data for non-targeted analysis: analyte identification in waste water sample by CCS measurement

Graphical Data

- **Counts** graph showing peaks at m/z values.
- **Drift time (ms)** graphs for m/z values.

Textual Data

- **LC retention time:** 10.72–10.75 min
Acquisition of nested LC-IM-qTOF-MS data for non-targeted analysis: analyte identification in waste water sample by CCS measurement

Ifosfamide (db CCS = 158.7 Å²)
Cyclophosphamide (db CCS = 155.2 Å²)

EIC for the [M+Na]⁺ adducts (m/z = 283.0140) of ifosfamid and cyclophosphamide

Acquisition of nested UHPLC-FAIMS-TOF-MS data for non-targeted analysis of a urine extract

[Arthur K. et al., Anal. Chem. 2017 (DOI: 10.1021/acs.analchem.6b04315)]
Acquisition of nested UHPLC-FAIMS-TOF-MS data for non-targeted analysis of a urine extract

[Arthur K. et al., Anal. Chem. 2017 (DOI: 10.1021/acs.analchem.6b04315)]
Environmental analysis and ion mobility/mass spectrometry

• High level of orthogonality between ion mobility (differential mobility) and \(m/z \)
• High sensitivity
• Rapid response (seconds – minutes)
• Structural analysis/analyte identification
• Resolution of isobaric/isomeric ions (reduced chemical noise)

➤ Improved performance for targeted high throughput quantitative analysis

➤ Increased peak capacity for non-targeted (‘Omics’) applications
Acknowledgements

Loughborough: Kayleigh Arthur, Claire Bramwell, Med Benyezzar, Natali Budimir, Michelle Colgrave, Caitlyn Da Costa, Neil Devenport, John Griffiths, Emma Harry, Mark Howdle, Alex Hill, Gushinder Kaur-Atwal, Aditya Malkar, Rob Smith, James Stygall, Katarzyna Szykula, Vicky Wright

Professor Gary Eiceman, Dr Jim Reynolds, Dr Steve Christie, Prof Paul Thomas, Dr Matt Turner

Collaborators: Tony Bristow, Andy Poulton, Andy Ray, Dan Weston, Ian Wilson, Chris Mussell, Gavin O'Connor, Elodie Champarneaud, Danielle Toutouni, Billy Boyle, Lauren Brown, Ashley Sage, Perdita Barran, Ewa Jurneczko, Alison Ashcroft, Tom Knapman, Carles Bo, Fernando Castro-Gómez, Christine Eckers, Alice Laures, Jean-Claude Wolff

Tom Lynch, Sam Whitmarsh, Chrissie Wicking

Funders: BBSRC, EPSRC, EU, Agilent Technologies, AstraZeneca, BP, GlaxoSmithKline, Hope for Cancer, LGC, Loughborough University, Owlstone, Syngenta, Waters